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ABSTRACT

Motivation: Ontologies provide a structured representation of the

concepts of a domain of knowledge as well as the relations between

them. Attribute ontologies are used to describe the characteristics of

the items of a domain, such as the functions of proteins or the signs

and symptoms of disease, which opens the possibility of searching a

database of items for the best match to a list of observed or desired

attributes. However, naive search methods do not perform well on

realistic data because of noise in the data, imprecision in typical

queries and because individual items may not display all attributes

of the category they belong to.

Results:: We present a method for combining ontological analysis

with Bayesian networks to deal with noise, imprecision and attribute

frequencies and demonstrate an application of our method as a dif-

ferential diagnostic support system for human genetics.

Availability: We provide an implementation for the algorithm and the

benchmark at http://compbio.charite.de/boqa/.
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1 INTRODUCTION

Ontologies are knowledge representations using controlled voca-

bularies that are designed to help knowledge sharing and com-
puter reasoning (Robinson and Bauer, 2011). An ontology can
be defined as a specification of a conceptualization (Gruber,

1993), meaning that the ontology provides a computational rep-
resentation of the concepts of a domain together with the seman-
tic relations between them. Concepts are often represented as

nodes and the relations between them as edges in a directed
graph. Ontologies have become essential components of search
engines for the world-wide web, e-commerce and medicine

(Köhler et al., 2009; Labrou and Finin, 1999; McGuinness,
2003). They are used to represent items of a domain of know-
ledge, e.g. the ChEBI ontology not only provides a comprehen-

sive representation of biologically relevant small molecules
(Degtyarenko et al., 2008) but also to represent the attributes
of the items of a domain; for instance, the Gene Ontology

(GO) provides a comprehensive representation of gene functions

(Ashburner et al., 2000), i.e. the attributes of items of the domain

of molecular biology.

Terms that describe only attributes of items are the base of

ontologies to which we refer as attribute ontologies. There is a

special annotation relation by which items are linked to the terms

in order to express the fact that an item possesses the attribute

described by the term. The annotation propagation rule implies

that the annotation relation is propagated along other relations

to parent terms and thus to all ancestor terms (Robinson and

Bauer, 2011). For instance, in GO, annotation propagation is

defined over is a and part of relations. Hence, if a gene is anno-

tated to the GO termATP binding, it is implicitly annotated to all

ancestors of the term including nucleotide binding. This leads to

statistical dependencies between ontology terms that can sub-

stantially degrade the performance of ontology analysis methods

(Alexa et al., 2006; Bauer et al., 2010; Grossmann et al., 2007;

Lu et al., 2008).
In addition, semantic similarity measures have been developed

that exploit information content or graph structure to compare

different items based on their annotations (Pesquita et al., 2009).

On the basis of these measures, we have previously developed an

algorithm for querying a database with ontology terms and rank-

ing the results (Köhler et al., 2009; Schulz et al., 2011). However,

none of the presently available ontology search algorithms has

been explicitly designed to deal with the kinds of noise to be

expected in real-life queries. For instance, in the setting of a

clinical differential diagnosis decision support system, false-

positive queries may ensue if a patient has signs or symptoms

unrelated to the underlying diagnosis. Consider phenylketonuria

(PKU), which is a hereditary metabolic disease that is character-

ized by numerous phenotypic abnormalities in untreated pa-

tients. A person with PKU may additionally develop an

unrelated disease such as rheumatoid arthritis (RA), but the

physician may not recognize the fact that the joint manifestations

of RA are unrelated to the manifestations caused by PKU. On

the other hand, not every person with a given disease necessarily

has all of the signs and symptoms that are associated with the

disease. For instance, most patients with Marfan syndrome have

aortic dilatation, i.e. an expansion of the ascending aorta, but

only about half have ectopia lentis, which is a displacement of

the lens of the eye. If a feature occurs more frequently in one

disease than in another, then, all else equal, we would tend to*To whom correspondence should be addressed.
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believe that the former disease explains the presence of that fea-
ture better than the latter disease and therefore can be considered

as the more likely candidate.
Medical diagnostic decision support systems have been under

development for decades, making use of algorithms based on

Bayes’ theorem, fuzzy set theory, Bayesian networks and artifi-
cial neural networks. Many of these systems were designed for
the diagnosis of individual diseases such as appendicitis. Several

Bayesian network algorithms have modeled relations between
diseases, findings and probabilistic links between the findings,

but such Bayesian networks can be complex and intractable
for large-scale problems (Wagholikar et al., 2011).
In this work, we develop the Bayesian Ontology Query

Algorithm (BOQA), which, in contrast to previous approaches,
integrates the knowledge stored in an ontology and the accom-
panying annotations into a Bayesian network (Neapolitan, 2003)

in order to implement a search system in which users enter one or
more terms of the ontology to get a list of the best matching
domain items. For this purpose, we propose a graphical model

that both reflects the hierarchical structure of the underlying at-
tribute ontology and the propagation of errors of queries.
We derive an efficient algorithm to apply probabilistic inference

on this model given the queries and perform simulation studies to
assess the performance. We conclude that embedding the ontol-
ogy search into a Bayesian framework naturally enables a gen-

eral framework for searching that deals with false-negative and
false-positive query items, statistical dependencies in the attribute
ontology and annotation frequencies.

We demonstrate our method with an application as a deci-
sion support system for differential diagnosis in human
genetics. The model is built using the Human Phenotype

Ontology (HPO; Robinson et al., 2008), Online Mendelian
Inheritance in Man (OMIM; Amberger et al., 2009) and
Orphanet (Aymé, 2003). Figure 1A shows an excerpt of the

human ontology with annotated diseases, whereas Figure 1B
shows a high-level overview for the problem. We note that a
preliminary version of this application has been published in

Robinson and Bauer (2011).

2 METHODS

2.1 Modeling queries

We model the queries using a three-layered Bayesian network of Boolean

variables. A variable represents either a state of an item or a state of a

term (Fig. 2).

The first layer is referred to as the item layer I, and contains n Boolean

variables I1, . . . , In. Each variable stands for the state of one of the n

items of the domain. If Ij ¼ 1, then item j is active, and if Ij ¼ 0, then item

j is inactive.

Fig. 1. Principle idea of the approach in the context of clinical diagnosis. BOQA takes the data model derived from an attribute ontology and

annotations together with a set of query terms to produce a ranked list of items. (A) A portion of the HPO with frequency-enhanced annotations to

OMIM diseases. This information is used to define the data model of our application. (B) The high-level specification of the approach in the context of

the diagnostic setting

Fig. 2. A Bayesian network with two items annotated using an ontology

with seven terms. Item 1 is annotated to term 3, and item 2 is annotated

to terms 4 and 7. The annotations are modeled by edges from the item to

the hidden layer. The edges within the hidden layer are directed from

child to parent terms in the ontology and implement the annotation

propagation rule. The edges within the query layer are directed in the

opposite direction, and together with the one-to-one edges from hidden to

query layer are used to model false-positive and false-negative queries.

We also depict a particular configuration of the network, in which item 1

is active and term 6 forms the query. Thus, there is a false-negative event

for term 3 and a false-positive event for term 6. Probabilities of involved

non-trivial events are shown associated with the nodes of the query layer
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The variables of I are connected only to variables of the second layer,

which contains Boolean variables H1, . . . ,Hm representing the hidden

states of the m ontology terms. If Hi ¼ 1, then term i is on in the

hidden layer, and if Hi ¼ 0, term i is off. For every annotation between

an item j and an term i, there is an edge from Ij to Hi. That is, the

connections between I and H reflect the explicit annotations of domain

items to ontology terms. Annotations implied by the annotation propa-

gation rule are modeled using edges in the hidden layerH that correspond

to the structure of the ontology.

Finally, the hidden states of the terms are connected to the query states

of the terms denoted as Q1, . . . ,Qm. They form the third layer Q. If

Qi ¼ 1, then term i is part of the query, whereas Qi ¼ 0 means that i is

not part of the query. The query state of a term depends on the corres-

ponding state of the hidden layer, so there are links between elements of

H and Q, i.e. for each i there is an edge from Hi to Qi. The propagation

betweenH andQ is probabilistic and thus is used to model false negatives

(Hi ¼ 1 but Qi ¼ 0) and false positives (Hi ¼ 0 but Qi ¼ 1).

According to the annotation propagation rule for ontologies, if an item

j is annotated to term i then it is also annotated to all ancestors of i. We

assume that queries follow a similar rule. That is, if a term i is explicitly

used in the query, i.e.Qi ¼ 1, then it is assumed that all of the ancestors of

this term are also part of the query. This has implications for classifying

the query states, which we reflect using edges within the query layer that

are directed in the opposite orientation to the edges of the hidden layer.

2.2 Application

In our clinical diagnostics application, the domain items correspond to

diseases, and HPO terms describe the attributes (i.e. signs, symptoms or

other phenotypic abnormalities, all referred to as ‘symptom’ in the fol-

lowing) of the diseases. If Ij ¼ 1, then the patient has disease j, and if

Ij ¼ 0, the patient does not have the disease. If Hi ¼ 1, then feature i is

present in the patient, whereas it is not present ifHi ¼ 0.Qi ¼ 1 expresses

that symptom i was identified as present in the patient, whereas if Qi ¼ 0,

then symptom i was not observed by the physician making the diagnostic

query. A false positive occurs if the physician diagnosed a symptom even

though it is not truly present. A false negative occurs if the patient has a

symptom, which is not observed by the physician.

2.3 Notation

The joint probability distribution (JPD) of the model is denoted as P(I, H,

Q). In order to specify the local probability distribution (LPD) for each

type of variable, we use subscripts to refer to a set of indices, e.g. Qf1, 2g
refers to fQ1,Q2g. Expression pa(i) denotes the set that contains the parent

or parents of term i and ch(i) refers to the children of i. Note that parent

and children refer to relations of the ontology and not to edges of the

Bayesian network. Finally, ea(i) denotes the set of all items that are expli-

citly annotated to term i. In the example shown in Figure 2, we have

eað3Þ ¼ f1g eað4Þ ¼ f2g eað5Þ ¼ fg

pað3Þ ¼ f2g pað4Þ ¼ f3g pað5Þ ¼ f3, 6g

chð3Þ ¼ f4, 5g chð4Þ ¼ fg chð5Þ ¼ fg:

If X denotes a set of random variables X1, . . . ,Xn, then X_ defines

another Boolean random variable, such that X_ ¼ 1, if and only if (iff)

there is any Xi 2 X with Xi ¼ 1, otherwise X_ ¼ 0. In other words, X_ is

the logical disjunction defined by X_ ¼ X1 _ X2 _ . . . _ Xn. Similarly, we

define X^ as the logical conjunction of all variables of X. That is, X^ ¼ 1

iff all members of X are 1, otherwise X^ ¼ 0.

2.4 LPDs of hidden term variables

For didactic purposes, we will first present a simplified version of the

BOQA network in which the frequency of each annotation is 1.

Therefore, if an item j is active, then all terms to which j is explicitly

annotated are on in the hidden layer. If a term i in the hidden layer

is not annotated to an active item, then it is off if all of the children of

term i are off in the hidden layer, otherwise it is on. Thus, the state

propagation from the item layer to the hidden layer, i.e. the explicit an-

notations, as well as the propagation within the hidden layer, i.e. implied

annotations, is a deterministic function. Formally, the LPD of a singleHi

is specified as:

PðHi ¼ 1jI_eaðiÞ,H
_
chðiÞÞ ¼ maxfI_eaðiÞ,H

_
chðiÞg:

If we denote the set of items that are explicitly or implicitly annotated

to term i as aðiÞ, it follows that, for a given configuration I ¼ ði1, . . . , inÞ

and H ¼ ðh1, . . . , hmÞ

Ym
i

PðHi ¼ hijI
_
eaðiÞ,H

_
chðiÞÞ ¼

1, 8j : ij ¼ 1, j 2 aðiÞ
0, otherwise:

�
ð1Þ

Equation (1) merely states that there is only one valid configuration of

states of H for a given configuration of states of I, namely that in which

only the hidden states for the terms are on to which any active item is

explicitly or implicitly annotated.

2.5 LPDs of query term variables

State propagation between the hidden layer and the query layer is mod-

eled probabilistically, whereby the global parameters � and � represent

the probability of a false-positive and false-negative event. Edges between

nodes within the query layer are used to model the propagation of false

positives and false negatives within the query layer.

A false-negative query occurs if Hi ¼ 1 6¼ Qi ¼ 0. Qi is off with prob-

ability �, if the query state of at least one parent of i is on and the hidden

state of term i is also on. By assumption, if the query state of the parents

of term i is off, then the query state of term i must also be off. Formally,

we have

PðQi ¼ 0jHi ¼ 1,Q^paðiÞ ¼ 0Þ ¼ 1

PðQi ¼ 1jHi ¼ 1,Q^paðiÞ ¼ 0Þ ¼ 0

PðQi ¼ 0jHi ¼ 1,Q^paðiÞ ¼ 1Þ ¼ �

PðQi ¼ 1jHi ¼ 1,Q^paðiÞ ¼ 1Þ ¼ 1� �:

Thus, the off-case is propagated in a top-down fashion, in which a false

negative is only counted once per branch, when it is first encountered.

A false-positive observation occurs if Hi ¼ 0 6¼ Qi ¼ 1. We assign this

event a probability of �. Note that by assumption, the query state of

parents of i have to be on as well. The probability that the query state of a

term is correctly off given that the query state of all of its more general

terms are on is 1 – �. Formally, we have

PðQi ¼ 0jHi ¼ 0,Q^paðiÞ ¼ 0Þ ¼ 1

PðQi ¼ 1jHi ¼ 0,Q^paðiÞ ¼ 0Þ ¼ 0

PðQi ¼ 0jHi ¼ 0,Q^paðiÞ ¼ 1Þ ¼ 1� �

PðQi ¼ 1jHi ¼ 0,Q^paðiÞ ¼ 1Þ ¼ �:

2.6 JPD for the basic network

Letting m represent the number of terms in the ontology and using the

LPDs of the last paragraphs, we can now specify P(I, H, Q):

PðI,H,QÞ ¼ PðIÞ
Ym
i¼1

PðHijI
_
eaðiÞ,H

_
chðiÞÞPðQijHi,Q

^
paðiÞÞ: ð2Þ

2504

S.Bauer et al.



Given a particular configuration (H, Q) for the variables of the hidden

and query layers, we define

mxyzjQH ¼ ijQi ¼ x ^Hi ¼ y ^Q^paðiÞ ¼ z
n o��� ���

to represent the number of all pairs of nodes (Hi, Qi) with the given

configuration. Note that X
x, y, z2f0, 1g

mxyzjQH ¼ m:

We will assume that the probability of an invalid configuration is zero,

i.e. m110jQH ¼ m100jQH ¼ 0. Furthermore, observe that the conditional

probabilities for cases m010jQH and m000jQH do not contribute to the prod-

uct as they are 1. Therefore, only four of the eight possible values con-

tribute to the conditional probabilities of Qi, so that we have

Ym
i¼1

PðQijHi,Q
^
paðiÞÞ ¼ �

m011jQH ð1� �Þm111jQH ð1� �Þm001jQH�m101jQH ð3Þ

2.7 Searching for items using probabilistic inference over

annotations

BOQA is designed to provide a query system by which users enter a list of

terms representing attributes of items in a database and get back a list of

the items ranked according to how well the attributes of the item match

the attributes in the query. In our model, this is captured by the prob-

ability distribution of the activity state of the items given the observation

or PðIjQÞ. After applying the definition of conditional probability and

demarginalizing P(I, Q) for H, we have

PðIjQÞ ¼
PðI,QÞ

PðQÞ
¼

P
H PðI,H,QÞ

PðQÞ
:

By using Equation (2), we get for the numerator:

X
H

PðI,H,QÞ ¼ PðIÞ
X

H2f0, 1gm

Ym
i¼1

PðHijI
_
eaðiÞ,H

_
chðiÞÞPðQijHi,Q

^
paðiÞÞ: ð4Þ

Note that although there are 2m distinct configurations of H, only one is

valid because of Equation (1). That is, for H, we only need to consider a

single configuration ðhI1, . . . , hImÞ, in which hIi ¼ 1, iff term i is explicitly or

implicitly annotated to the active items of i. The probability of other

possible assignments of H is 0. Thus, we have

X
H

PðI,H,QÞ ¼ PðIÞ
Ym
i¼1

PðQijHi ¼ hIi ,Q
^
paðiÞÞ ¼ PðIÞPðQjIÞ: ð5Þ

Finding the configuration of items that best explain the observed data is

equivalent to maximizing PðIjQÞ for I. For this purpose, it is enough to

maximize the product of the likelihood PðQjIÞ and the prior P(I), since

P(Q) is the normalization constant. In general, the optimization problem

to maximize this product is NP-hard (Neapolitan, 2003). However, if we

limit to possible configurations of active items to ones in which only a

single item is active (e.g. a situation in which a patient only has one

disease), then we are able to find the best item more efficiently. We im-

plement this restriction by defining the prior P(I) to have a probability of

one only for such configurations, and zero otherwise:

PðI1 ¼ i1, . . . , In ¼ inÞ ¼
1, if

Pn
j¼1

ij ¼ 1

0, otherwise:

8<
:

We are also able to determine the marginals exactly without increasing

complexity, as

PðIjQÞ ¼
PðQjIÞPðIÞ

PðQÞ
¼

PðQjIÞPðIÞP
I0
PðQjI0ÞPðI0Þ

,

where the sum is taken over the n valid models. The procedure is sum-

marized in Algorithm1.

Assuming that all involved mathematical calculations can be done in

O(1), the inference procedure as specified in Algorithm 1 has a complexity

of O(nm). However, it is easily possible to conceive an algorithm with

running time Oð�þmÞ time steps, where � ¼
Pn

j¼1 �ðj� 1, jÞ and

�ðj� 1, jÞ is the Hamming distance between the annotation bit vectors

for item j – 1 and j, by updating rather than calculating the counts for

subsequent items. For an optimal running time, the items are renumbered

in a preprocessing step such that � is minimal. Although this optimiza-

tion problem is NP-hard, efficient algorithms such as the one by

Christofides (1976) can be used to get a constant factor approximation

of the optimal solution due to the relatedness of this problem with the

traveling salesman problem.

2.8 Parameter-augmented network

Up to now, we have treated the false-positive rate � and the false-negative

rate � as constants. Since the true value of these parameters is unknown,

we choose to integrate over a range of values for � and �. Since the

integral is not tractable, we integrate over a grid of suitable range of

different combinations of � and �.

Formally, we augment the Bayesian network with two nodes A and B

that represent these parameter values, i.e. the realization of A is � and the

realization of B is � and which have links to the nodes within the query

layer. Letting � ¼ ðA,BÞ, then the LPD is parameterized as

PðQijH
I
i ,Q

^
paðiÞ,�Þ. The JPD of the augmented network is factored as

PðI,H,�,QÞ ¼ PðIÞPð�Þ
Ym
i¼1

PðHijI
_
eaðiÞ,H

_
chðiÞÞPðQijHi,Q

^
paðiÞ,�Þ:

The likelihood PðQjIÞ becomes

PðQjIÞ ¼
X
H

Ym
i¼1

PðHijI
_
eaðiÞ,H

_
chðiÞÞ

" #X
�

Pð�Þ
Ym
i¼1

PðQijHi,Q
^
paðiÞ,�Þ,

while we assume that A and B and thus � are discrete random variables.

A simple choice for values is an equal-sized grid over the range (0, 1).

However, assuming that only few false positives are entered, it is

appropriate to limit �. We choose � 2 fam j05a56g and

� 2 f0:1bj05b510g with uniform prior.

2.9 Frequency awareness

In many diseases, any given symptom may not occur in all patients but

only in a certain proportion of the patients. We will refer to this quantity

as the frequency of a disease feature. The HPO project provides feature

Algorithm 1 Procedure BayesSearch

Data: Observations �, �, q1, . . . , qn
a 0 /* Normalization constant accumulator */

for j 2 f1, . . . , ng do /* For each item */

for i 2 f1, . . . ,mg do /* For each term */

if j is explicitly or implicitly annotated to I then

hi  1

else hi  0

for x, y 2 f0, 1g do

mxy1jQH ijqi ¼ x ^ hi ¼ y
� ��� ��

aj  �m011jQH ð1� �Þm111jQH ð1� �Þm001jQH�m101jQH

a aþ aj
for j 2 f1, . . . , ng do

pj  
aj
a

return ðp1, . . . , pnÞ
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frequencies for an increasing number of diseases based on original pub-

lications and data extracted from OMIM (Amberger et al., 2009) and

Orphanet (Aymé, 2003). We will now show how our framework can be

extended to exploit frequency information.

We define the frequency of an attribute represented by term i asso-

ciated to an item j as 0 � fj, i � 1. We assume that fj, i ¼ 0, iff an item j is

not annotated to a term i. Using this convention, we reformulate the

LPDs of the hidden nodes as follows:

PðHi ¼ 1jI,H_chðiÞ ¼ 0Þ ¼ 1�
Yn
j¼1

ð1� Ij fj, iÞ, ð6Þ

PðHi ¼ 1jI,H_chðiÞ ¼ 1Þ ¼ 1: ð7Þ

Thus, the state propagation, which is exemplified in Figure 3, is no longer

deterministic. By definition, fj, i represents the probability that term i is on

if item j is active, and thus the probability that the hidden state of i is off

if item j is active is 1� fj, i. If we additionally incorporate the activity state

of the item, we get 1� Ij fj, i that is, if item j is inactive, then term j is off

with probability of 1. Therefore, the hidden state of term i given all items

is off, if the propagation of each active item independently lead to an off

state. The probability of this event is the product of 1� Ij fj, i for each

item j. Note that if only one item is active, then Equation (6) can be

simplified to PðHi ¼ 1jI,H_chðiÞ ¼ 0Þ ¼ fj, i.

Using this definition, the calculation for the likelihood becomes more

complex the more annotations with frequencies are available, i.e. the

more non-deterministic state propagations are included in the model,

because the number of possibilities that needs to be explored grows

exponentially in the number of such annotations. In the search procedure,

we therefore restrict the search space to the k least frequent annotations

which are not 0, all other annotations always considered as present. As

we will see in the benchmarks, even though this is a simple heuristic, we

are able maintain highly precise predictions for a greater recall.

2.10 Benchmarks

We performed a systematic benchmark of five search methods using data

from the HPO project supplemented by frequency information from

Orphanet. The HPO ontology file and phenotype annotation file were

downloaded at June 1, 2011. In total, there were n¼ 2368 diseases with

frequency information annotated to a total of 6584 HPO terms, with

�ðj� 1, jÞ � 139 on average for any disease j.

We simulated five patients for each of the n diseases. For any one

simulated patient, phenotypic features were assigned according to the

frequency data, and it was assumed that features without any frequency

information are always present. The features of the simulated patient

were then used to generate a diagnostic query. We additionally simulated

the uncertainties of the diagnostic process by randomly adding assigned

unrelated features, i.e. false positives, with a probability � to the query.

Note that by this event, also terms that are the ancestors will be part of

the query. In order to simulate false-negative observations, we removed

disease features from the query with a probability of �. If a term is

removed from the query, then by assumption, all of its descendants

were also removed. These arrangements represent a kind of noise in-

tended to represent realistic clinical situations in which not all patients

have textbook presentations of disease, and not all physicians have the

same expertise. Finally, from the set of most specific terms, we randomly

drew s terms to simulate the fact that physicians, as well as users of other

search systems, are unlikely to enter more than a relatively small number

of search terms. Note that this has an impact on the true �.

For each set of simulated query terms, we applied one of following

search procedures: (i) Res: ranking according to Resnik-based semantic

similarity score as done in Köhler et al. (2009); (ii) Lin: similar to Res but

using term similarity measure defined in Lin (1998); (iii) JC: similar to

Res but using term similarity measure defined in Jiang and Conrath

(1997); (iv) ResP: ranking according to the P-value approach as in

Köhler et al. (2009). We use 250 000 random queries to approximate

the score distribution. Ties are resolved using the semantic similarity

score. A Bonferroni correction based on the number of diseases tested

for was applied. Although this has no influence on the ranking, this

affects how items are classified at a fixed threshold; (v) BOQA�: the

Bayesian approach without taking frequency into account; (vi) BOQA:

the frequency-aware Bayesian approach with k¼ 10 and (vii) BOQA0: the

frequency-aware Bayesian approach with k¼ 10 and without integrating

over parameters, i.e. with the parameters � and � set to the correct values.

This gives an upper bound for the performance of the algorithm.

Each method returns a result vector of length n, in which entry j rep-

resents either a score or a probability value for disease j. The concaten-

ation of all five n result vectors and the true labels are used to evaluate the

performance of the method by receiver operating characteristic (ROC)

and precision/recall analysis.

3 RESULTS

The result of this work is an efficient search procedure called
BOQA that embeds an attribute ontology, items of a domain

and their annotations into a Bayesian network. Figure 2 depicts

a graphical representation of the network for an example ontol-
ogy. The objective of the method is to find appropriate items

given a set of user query terms, which we handle by applying
probabilistic inference on the Bayesian network instance.

Formulating the task as a Bayesian network problem allows

Fig. 3. Frequency-aware propagation. Here, I2 is active, whereas I1 is

inactive. Given that, the probability that H4 is on is f2,4. The probability

that H7 is on is f2,7. In addition, the frequencies between the diseases and

all other terms are 0 so they can be omitted. Thus, there are four possible

configurations of the model. The probability of configuration (A) is

f2,4f2,7, (B) is ð1� f2,4Þf2,7, (C) is f2,4ð1� f2,7Þ, whereas for (D) it is

ð1� f2,4Þð1� f2,7Þ
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one to take false-positive and false-negative user queries as well

as the attribute frequencies into account. Details are given in

Section 2.

We test BOQA by using it as a differential diagnostic tool for

clinicians by simulating 11840 patients with 2368 diseases anno-

tated using information from the HPO, OMIM and Orphanet.

ROC and precision/recall analysis were used to compare the per-

formance of BOQA with two other ontology-based search pro-

cedures. We report the results for different settings for the

false-positive rate �, the false-negative rate � as well the

number of terms that are used to form a query of size s.
The upper part of Figure 4 shows the evaluation of simula-

tions through ROC curves. The Res, Lin and JC approaches,

which are all based on variants of raw semantic similarity scores,

have the worst performance. The P-value method, ResP, shows

better performance, as has been previously reported (Köhler

et al., 2009; Schulz et al., 2011). The Bayesian approaches pre-

sented here shows the best performance at all tested noise levels.

In particular, the BOQA performs better than the simpler

BOQA� approach, which lacks the inclusion of frequency infor-

mation. BOQA is only beaten by the BOQA0 approach, in which

the true values of � and � are known.

Due to the large disproportion between the positive and nega-

tive classes, the difference between the methods is noticeable but

not very large in the ROC analysis. The difference becomes

clearer, if one looks at the positive prediction value (PPV) at a

fixed threshold. For instance, for the setting in which �¼ 0.002,

�¼ 0.002 and s¼ 6, from the data generated for the 11840 pa-

tients, BOQA assigns 6933 items a marginal probability40.5, of

which 5626 were true positives. This gives a PPV of 80%.

In contrast, the P-value approach flagged 8636 items with a

P-value50.05, of which 3761 items were true positives, yielding

a PPV of only 44%. As reported in Table 1, the same conclusion

holds for other parameter settings.
The PPV and the precision of a classifier refer to the same

quantity. In general, the so-called precision/recall analysis repre-

sents a complementary way of evaluating the results of prediction

methods in which a range of recall, i.e. sensitivity, thresholds are

analyzed. As shown in the lower part of Figure 4, the Bayesian

approaches indeed yield a higher precision over the entire range

of recall thresholds with all noise configurations tested.

4 DISCUSSION

We have demonstrated the use of BOQA as a decision support

tool in human genetics, in which physicians enter the phenotypic

abnormalities observed in a patient to search among 2368

Mendelian diseases for the most likely diagnosis to explain the

symptoms of the patient. In this setting, BOQA models a gen-

erative process, in which a disease causes observable phenotypic

abnormalities that are structured according to the HPO. After

the physician has entered the observations, probabilistic infer-

ence is applied in order to rank each disease according to the

probability that it explains the observed phenotypic

abnormalities.
We showed with simulations that a marginal probability of an

item being40.5 of items as calculated by our model is a more

precise indicator for finding the true item as a P-value 50.05

(Table 1). This holds true for the entire range of recalls

(Fig. 4). One obvious reason for this improvement is that

BOQA directly models false-positive and false-negative observa-

tions and seamlessly integrates available frequency information.

Another important reason is that BOQA is a global approach.

It models the generation of search queries and applies probabil-

istic inference by which the result of each item depends on the

result of all other items: the marginal probabilities add up to 1.
In order to derive an efficient inference algorithm, we assume

that exactly one item is responsible for the terms part of the

query. This simplification is often realistic in the field of medical

genetics, which we used as a demonstration. Clearly, BOQA can

also find combinations of items that best explain a given set of

query terms by defining appropriate prior distribution P(I) in

Equation (6), which may be useful for certain applications.

Note that this generalization has consequences on the tractability

Fig. 4. Performance comparison using ROC and precision/recall ana-

lysis. The analysis was performed on 2368 diseases. For each disease,

five patients were generated according to available frequency informa-

tion. The true features of each patient were then obfuscated according to

different levels of noise (�,�) as indicated. The maximum query size s was

set to 6

Table 1. Performance according to the positive predictive value TP/

(TPþFP) at a fixed classification threshold

BOQA (40.5) P-value (50.05)

�/�/s TP TPþFP PPV (%) TP TPþFP PPV (%)

0.001/0.1/6 8479 9448 90 6129 14913 41

0.002/0.1/6 5725 7139 80 3761 8636 44

0.001/0.1/3 3456 4648 74 2035 4721 43

0.002/0.1/3 1903 2988 64 1210 2753 44
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of the inference problem as combinations of items being active
may have to be considered. Furthermore, for reasons of effi-
ciency, we considered merely the frequency information for
k-lowest probable features. In order to generalize the algorithm

with respect to these simplifications, it may be worthwhile to
apply more sophisticated probabilistic inference procedures
such as sampling based or approximative ones. These may also

help to reduce the still relative large gap between BOQA0 and
BOQA.
Our Bayesian approach to ontology-based searching allows a

wide range of extensions that may be useful in specific situations.
For instance, if a physician is absolutely sure that a certain
observed feature is present, then one could assign a very small

�-value (probability of false positives) to that feature.
Analogously, a very small � range value can be asserted for a
particular feature, if the physician is sure that the feature is not
present in the patient, say because it has been ruled out by a

targeted laboratory investigation. On the other hand, if the phys-
ician is unsure, this could be encoded by larger values for these
parameters. This additional knowledge could help to distinguish

between different search results if no disease attains a probability
40.5. Another conceivable enhancement is the inclusion of
knowledge about possible co-occurrences of features. As this re-

quires a more complex annotation model, a simulation experi-
ment similar to the proposed one could be used to verify the
usefulness of the approach.
Although we have presented an application of BOQA in the

medical domain, the search algorithm is by no means limited to
medicine. Applications for searching archives of documents in
order to find documents belonging to categories that have been

annotated to certain concepts based on word usage may profit
from BOQA. For instance, if a word such as semiconductor
occurs in 35 of 70 documents in the category computer hardware,

then the frequency of this term would be 0.5; categories such as
computer hardware would play the role of diseases in our ex-
ample, and documents would play the role of patients.
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